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BOUNDARY-VALUE APPROACH TO NUCLEAR EFFECTS
IN MUON-CATALYZED D-T FUSION

G. M. Hale, M. C. Struensee, R. T Pack, and J. S. Cohen
Theoretical Division, Los Alamos Narional Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The use of boundary-matching techniques, as contained in K-matrix theory, to
describe multichannel nuclear reactions is discussed. After giving a brief summary of
the application of such techniques to the nuclear reactions in the He system, we
discuss a simple extension of the description to include muons, which was used to
calculate nuclear effects on the L=0 eigenvalues of the dtit molucule in various adiabatic
approximations. Next, the form of the outgoing nap wavefunction is discussed,
resulting in a new formuiation of the amplitudes used to calculate the a—p sticking
fraction. Possible methods of solving for these amplitudes using the boundary-value
approach are suggested, and some deficiencies of the "standard" expression for the
sticking amplitudes are pointed out.

INTRODUCTION

It is, perhaps, ironic that the fundamental process underlying p—catalyzed d-t
fusion, the nuclear reaction T{(d,n)4He, has been one of the last elements added to the
descrifrion of fusion out of the dty molecule. In a sense, this is justified by the fact
that, although nuclear effects sirongly perturb the molecular wavefunction at small d-t
separations, the healing distance is short enough that their effects on all the observables
of the system considered up until now have been small. In this paper, we will describe
how nuclear effects were imposed on the nuclear eigenvalues of the dtp molecule, and
how they could be imposed on a quantity of vital interest in the muon-catalyzed fusion
cycle, the a—p sticking fraction, using an R-matrix cescription of the nuclear reactions
in the SHe system.

We begin with a brief resume of the R-matrix relations and definitions used to
characterize the nuclear rcactions in the SHe system, followed by a summary of results
from an extensive analysis of the experimental data. Next, it is shown how to
generalize the R-matrix approach to include the muon, in the approximation that the
nuclear and muonic degrees of freedom are separable. We then recapitulate the results
of appiying the theory, in the reduced R-matrix form, to study nuclear effects on the
cigenvalues of the S-wave molecular states, the wavefunctions of which were
calculated with a series of increasingly more accurate adiabatic approximations.
Finally, we give a new prescription for defining sticking amplitudes, and indicate how
they could be obtained numerically from our formalism. Some problems with the
"standard" expressions used for the sticking amplitudes are also pointed out.

R-MATRIX DESCRIPTION OF THE NUCLEAR SHE SYSTEM

R-matrix theory! is based on the idea that a many-body nuclear system: displays
simpler "channel” degrees of freedom whenever the radial separation rg ofP(WO
subgroups of the system is increased beyond the channel radius, ac. In this "channel”
region, the subgroups are assurned to be bound in their ground states, with at most
(point) Coulomb forces acting between them. The channel radii {8¢) dcfine a channel



surface which encloses the "nuclear” region. On this surfac' are detined the channel
surface states of total angular momentum (J) and parity,
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in which ¢4 and ¢7 are the spin-dependent bound-state wavefunctinns of the channel,
Mc is the channel reduced mass, and Y{ny is the spherical harmonic describing the

orbital motion. The R matrix is then defined as the channel-surface projections of a
resolvent (Green's function) operator,

N 1 YeaYor \
Rdc=(C|(HN+§f'JB - EN) lc) = E-E , (2}
A A N
in which the boundary operator
2, - ZIC)(CI(;;%C- B) (3)

has been added to the nuclear hamiltonian Hy for total energy En in order to make it
hermitian in the nuclear region. This allows the spectral expansion made in the last step
of Eq. (2) to be defined in terms of the solutions of

Hn+ELp-E)A)=0 . (4)

with Yo = (C|A). We use the reduced-width amplitudes ¥c), and eigenenergies E;, for
boundary conditions B¢ at channel radii a, as a parametric expansion of the R matrix,
and determine their values by fitting experimental data.

The formal solution of Schrédinger's equation inside the nuclear region,

-1
Wy = (Hy+ 24°E v, . (5)
implies the fundamental R-matrix relation,
cly) = X R felir, - Byl ) (6)
W " Ct ar,¢ ¢ W

which is a matching condition that can be used to determine quantities of interest in any
scattering or bound-state problem. In the case of n coupled channels, the fundamental
R-matrix relation holds for each of the n linearly independert solutions \y‘N so that in
terms of the matrices

U=y and U = (ci|—§7iri|\¢N) . Y
it becomes the matrix relation
U =RN(U - BU) =5 RN = (U'U'-B)! | (8)

Thus, the R matrix is essentially the reciprocal of a logarithmic derivative matrix, UU"!,
for the coupled radial solutions. Any particular solution of the coupled problem can be
constructed from a linear combination of the columns of the matrix U.



If one has a multichannel problem in which only a subset of the channels is of
explicit interest, the partitioned matrix technique of the reduced R matrix? is oiten
useful. This method consists of writing the fundamental R-matrix relation, Egs. (6) or
(8), in partiioned matrix (P,Q, where P+Q=1) torm, and assuming that in partition Q,

. A
Ug=LqYq (Ly= GQOQ) , (9)

the logarithmic derivatives LQ are those for purely outgoing-wave solutions 8q. Then
the R-matrix relation for the radial solutions in the P partition can be written as

-1 .
UP ={Rgp + RPQ(LQ-BQ)U - ROO(LQ-BO)] ROF,}(UP - BPUP) . (10)
which means that the motion in channel group P is described by the reduced R matrix
= -1
Rop = Rop *+ Rpalla Bl - RyallgBa)l e . (1)

With these preliminary ideas established, we can proceed to a brief description of the
application to reactions in the SHe system.3 A summary of the channel configuration,
data included, and %2 values for each of the reactions is given in Table I. The important
points to note are that: (1) the energy range of the analysis is rather broad, extending to
energies well above and below the a-t thresheold; (2) many different types of
observables (cross sections, polarizations, etc.) are included in the analysis for each
reaction, allowing the R-matrix parameters to be determined accurately and
unambiguously; (3) the overall %2 per degree of freedom for the fit (1.55), while not
ideal, indicates in our experience quite a good representation of the measurements for a
multchannel system.

Table I Summary of the SHe system R-matrix analysis

Chaanel Imax ac.(im)
d-t 3 5.1
n-4He 4 3.0
n-4He" 1 5.0
Reaction Energy Ranga  #Obsarvable Typas # Data Points G
T(d,d)T Eqe08 MeV 6 695 1147
T(d,n)4He Egs0-8 MeV 13 1020 1423
T(d,n)4He"  Eq=4.8-8 MeV 1 10 17
4Heg(n,n)4He  Ep=0-28 MeV. 2 6 1160
Totals: 22 2520 2767

# patameters = 97 = x2 per degree of freedom = 1.55



Examples of the quality of the fits to the integrated cross sections are given in Fig. 1.
The top part of the figure shows the fit to measurements of the integrated rex.tion
[T(d,n)*He] cross section, with a comparison at the right side, expressed as a ratio, to
the precise new data of Brown and Jarmie* over the region of the low-energy resonance.
The lower part of the figure shows similar comparisons with the measurements of the n-
o total cross section. Again, the right side shows a detail of the fit over the resonance,
in this case, containing the recent total cross-section data of Haesner et al.> One sees
that the R-matrix representation of these data is quite good.
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Fig. 1. Fits to measurements of integrated cross sections tor the 5He reactions.



At the low relative d-t energies that are of interest in cold fusion, the T(d,n)*He
reaction is almost completely dominated by the resonant J®™=3/2* transition. The R-
matrix parameters for this matrix are given in Table II. The first level is mainly
associated with the low-energy resonance, the next two with higher-energy 2D and D
resonances in the dt channel, and the fourth serves primarily as a background term,
especially in the na channel. Although the R matrix is clearly the relevant quantity in
the muon-catalyzed fusion problem, it is of interest to mention the S-matrix pole
structure® that results from matching to outgoing waves in the nuclear SHe system. In
addition to a "conventional” pole on the unphysical sheet (Sheet III) closest to the
physical sheet of the two-channel Riemann energy surface above the d-t threshold,
there is a "shadow" pole on Sheet II ( the sheet on which the d-t momentum has a
positive imaginary part and the n-a momentum has a negative imaginary part). The
effects of the two poles are separately visible in the reaction and total cross sections, as
is shown in Ref. 6. The presence of the shadow pole on Sheet II implies that the
Jr=3/2+ resonance in SHe would occur only in the na channel in the absence of
coupling betwecn the dt and na channels, contradicting the usual picture that it is
essentially a dt resonance.

Table II R-matrix parameters for the J® = 3/2* states of SHe. Channel labels (c) are in
spectroscopic notation. Eigenenergies Ej are center-of-mass values in MeV relative to
the r.i-/t2 threshold; reduced-width amplitudes Y. are also center-of-mass in units
MeV172,

A=1 A=2 A=3 A=4
cJ=372) a/(fm) B,

Ej 0.0837559 6.4713043 13.7357067 47.475246
45(a., 5.1 -0.37 1.1760678 0.0693397 -0.4955438 1.1052421
4D(d) 5.1 -2.00 0.1688724 -0.2729805 1.9910681 1.9847048

Yed
2D(dt) 5.1 -2.00 ) -0.0484797 0.8862475 0.0958513 0.2422464
2D(nar) 3.0 -0.59 0.3763218 -0.1562737 0.9994494 -3.8556539

—m

R-MATRIX DESCRIPTION OF THE SHE+u SYSTEM

The advantage of the R-matrix approach is that the addition of the muon to the
system can be treated differently in the nuclear and channel regions. In the nuclear
region, where the nucleons are in relatively close proximity, the total hamiltonian H is
approximately separable,

HaHy +H, (12)

with HN the nuclear hamiltunian as before, and H; the hamiltonian for a muon moving

about a He core. The wavefuncticn in the nuclear region is therefore, in general, a
sum of separable terms corresponding to the separation in H. However, we will in the
subsequent discussion keep only the first term of this sum,
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in which ¢, is the ground-state pu->He wavefunction corresponding to the ground-state

energy ES. This approximation joins smoothly with the adiabatic approximations to be

_ made in the channel region, as is depicted sche:mnatically in Fig. 2. The R matrix
"“(including the muon) is in this approximation

Ree= ClH+ L+ H B o) =1 ORL € (] (14)

with RN given by Eq. (2) in terms of the parameters of Table II, and En =E- Eﬁ_

|

0 isbatic

Fig. 2. Schematic of the single muon state (adiabatic) R-matrix approximation

In the channel region, the Coulomb attraction of the muon to the separated nuclear
ions has a significant effect, especially in the dt channel, where it causes bound
molecular dtyl states to occur. Coulomb binding of muons to alpha particles in the n
channel is also quite important, since this creates the "st.ck" muons that are lost from
the catalysis cycle. Thus, as the radial distance between the ions grows larger than the
channel radius, the separable approximation made in the nuclear region breaks down,
and one is faced with the difficult task (at least for dtp) of solving a three-body
Coulomb problem. Exact (non-adiabatic) calculations of bound-state dtp
wavefunctions have been the subject of extensive research over the past decade.’
However, a complication introduced by the nuclear effacts is that, since the channel



region excludes the origin, the wavefunctions in this region contain irregular functions
in addition to the regular functions present in the bound states. In order to avoid having
te deal with this kind of complexity in a fully non-adiabatic calculation, we decided to
test the R-matrix approach using a sequence of increasingly more accurate adiabatic
calculations for the dtu wavefunction in the channel region.

The natural starting point was to consider nuclear effects on the eigenvalues (bound-
state energies) Ep, of the dtpt molecule in this approximation,8 which allows the relative
d-t wavefunction to be obtained by solving a second-order differential equation
containing the muon attraction in an effective d-t potential. The solution of this
equation that matches at the channel surface to values derived from the nuclear R matrix
and tends asymptotically to a purely outgoing wave is a generalization of the bound-
state eigenfunction sometimes called the SieEcrt state, which occurs for a complex
eigenenergy Eg = E, - 4il". Thus, the shift AE = E,- Ep and the width T (which is
v~portional to the fusion rate Af) are direct measures of the nuclear effect on the
bound-state eigenvalues.

The matching at the channel surface is most conveniently accomplished by using the
reduced R matrix described in the paragraph containing Egs. (9)-(11). In this case, we
put the 4S(dt) channel (d) of Table II in partition P and the three remaining channels
(a=1,2,3) in partition Q, in order to define the single reduced R-matrix element

R =lo ﬁN 0 15
= 100 R (0 (15)
in which

_N N N N -1 _N

Rd‘ = Rdd + qu(l-q-Bq)[1 - qu(Lq-Bq)] qu . (16)

Since the adiabatic solutions in the dtp channel region near rg; = ag have the form

\Pdtu =Xa (rdt)¢p,(rp)

’

in which ¢y, ~ ¢3, we can project the fundamental R-matrix relation, Eq. (6), on (cpﬁ! to

obtain

N
(dtix ) = R, (dtl('a-a;;fdt =B, )y (17)

as a matching condition in the dt charnel at rq¢ = agy = 5.1 fm.

The purely outgoing-wave solutions for g > aqr were calculated using three
successiveiy more realistic adiabatic approximations: the Born-Oppenheimer (BO),
standard adiabatic (SA), and improved adiabatic (IA) approximations. The
improvements on the familiar BO approximation involved adding diagonal pieces of the
hamiltonian to the definiton of the adiabatic potentials and using anguiar-dependent
nmuonic wavefunctions, the details of which are contained in Ref. 8. In each case, the
complex energy Eg at which the matching equation (17) is satisfied was determined by
iteration. Then, by comparing with the bound-state eigenvalues obtained by matching
to regular bouadary conditions at the origin, the shifts and widths arising from
matching to nuclear boundary conditions at the channel radius were found.

The results for the lowest vibrational-rotational (v,L) states are given in Table III for
L=0 and v=0,1. The numbers suggest that the SA and [A approximations are
converging to something like the correct results, as was also indicated by a comparison
of the adiabatic bougd-state energies to the non-adiabatic value, and of the approximate
1-5He energies to E,. The agreement with the earlier calculations of Bogdanova et al.?
is quite stisfactory, considering that ihese calculations were done using an optical-



potential representation of the nuclear interactions, and different approximations were
made in solving for the dtp wavefunction and the complex eigenvalue Ey. Also shown
are the more recent results of Kamnikov and Mur,!0 who used the single-level R-matrix
representation of the reaction cross section given by Brown and Jarmie.*

TABLE III Energy shifts and resonance widths for the (v=0. L=0) and (v=1, L=0)

vibratdi‘onal-rotational states due to nuclear boundary conditions. Energies are in units
of 104 eV.

b e .

AE(v=0,L=0) (v=0,L=0) AE(v=1L=0) [(v=1,L=0)
BO 9.87 10.35 -7.63 8.03
SA -8.15 8.53 -7.08 7.44
IA -8.12 8.50 -6.75 7.10
Ref. 9 9.6 8.2 -8.0 6.8
Ref. 10 -12.5 9.0 -10.4 7.4

Fig. 3. Coordinates for describing the channel regions of SHe+y.



WAVEFUNCTION IN THE nap CHANNEL REGION AND p-o STICKING

-1 The coordinate labeling used to describe the channel regions of the system is given

~*in Fig. 3. At the na channel surface, rhg=an0=3 fm, the outgoing wave can be
._expressed in the separable approximation as

+
‘Unau(rna'ru) = th(knurnu)Y2o(Fna) (1%(?“) y (1 8)
in which B is a constant and h; is the outgoing Hankel function for 2=2. For

rna>ana, however, since the hamiltonian is exactly separable in the variables (Fn, Fyo),
the wavefunction can be written as

¥ poulE) = [0, [0k R0k, 00) [0 Eatya(Eratyalag (K By
x 8(E+E 1o-E)

=Jd’l\(njdp(Eua)aE('l\(n.Em)ﬁn(ﬁn,rn)%a(Em.rua)|En_E_Em (19)

in terms of the ei.ergy and momentum variables conjugate to f, and r,,. In Eq. (19),
the plane-wave states X,, and i-a states ¢, are taken to be energy-normalized, as is
¥ noy, SO that the znergy-conserving delta function in the first line results naturally
from the normalization conventions. The energy normalization of ‘¥ ngy also implies
the relation

A 2
Jaka [op Eualag(kyEyall® = 1 (20)
for the squared modulus of the expansion amplitudes ag integrated over all neutron

directions ’f(n and over the density p(Eq) of all bound and continuum K-a. states. This
means that the sum over the bound states,

A A b 2
o= Y [k lag (ko ELo) (21)
b
is the sticking fraction, and aE('Rn E :a) is the sticking amplitude for direction kn.

One could iavert the expansion for gy in Eq. (19) and {ind the sticking amplitude
from the integral

a (k,Epe) = Idrnﬁ;(f(n,rn)J.drw(pﬁa(Ezu,rw)‘in(E) , (22)

but this requires knowing ‘¥ noyu(E) for all ry and ryq (including the nuclear region).

Alternatively, one could project the expansion for ¥ nq,, onto a complete set of channel-
surface functions

O(r yo"Aner) j
(rna'rplna“’) = rnu YQO(?na)¢p(rp) ]
in which the index j ranges over all bound and continuum u-3He states, and obtain an
infinite set of coupled equations for the sticking amplitudes (after a partial-wave
expansion in kn ). If the coupling terms (Noy|xn o) on the right side of the equation



vanish for high-lying states cp’u and ¢,,q, then the truncated system of equations can be

solved by matrix inversion, knowing the left-hand side matrix elemerts,
+
(nap.l‘i‘mu) =Bh Q(kmana)sgzsjo '

vanish if the n-a angular momentum differs from & = 2 or if the u-5He wavefunction is
not that for the ground state.

The sticking amplitudes and sticking fraction defined in Eqs. (19) and (21) are, in

principle, quite different from the usual expressions used!!, which are based on the
impulse-approximaton transition matrix e¢lement

2 iq-
a = @alrie " ¥, (Fur,=0) 23)

for the (n,2) u-a bound state and muon momentum . However, one can obtain from
our framework expressions similar to those usually used by making the plane-wave
approximation for ¥noy,
KT
VYo @
In this case,

b b, Mgt O
(9.n(kn)¢pa|\ynuu> = 6(kna-kn)(¢unle “k”u w]¢p) ’
and the leading delta function is a poor approximation to the energy-conserving

S(En+E,q-E) expected, with E = Em+Eﬁ. The sticking amplitude is then

() -

ac (K, Epg) = J'dEna(kna-kn)(q,ﬁa|e"""“""“l¢ﬁ>
- & vval (oTna i 0
= (kg ) Ousle™ ™ 10 b e

In these expressions, the mass ratios == ‘mi and a=Y,Y, =0.0055 are used. The
m;i+Mg "

(24)

0

matrix element in Eq. (24) is energy-conserving only for E q=aEn+E =86 keV, far
above the bound- state energies at which it is evaluated. However, if the delta functions
are ignored, the remaining matrir ¢lement,

b b, M¥naTa, 0
Ae(Epa) = (Guale ™ ™~ “lo
is similar to the standard expression for the sticking amplitude.

SUMMARY AND CONCLUSIONS

We have discussed the R-matrix parameterization of the two-body reactions of a
multichannel system, and have shown that such a description gives a detailed and
accurate representation of the experimentzl measurements for the SHe system. The
"shadow pole" associated with J®™=3/2* resonance in the nuclear SHe system is an
interesting phenomenon that could have consequences for muon-catalyzed fusion, since
it occurs on the same sheet as the dty molecular ground state.

The R-matrix framework is well-suited also for describing the SHe+pL system, since
the division of coordinate space into the nuclear and channel regions allows a relatively
simple separable approximation to be made in the nuclear region that is not valid in the
channel regions. On the other hand, the three-body wavefunctions in the channel
regions can be treated exactly, albeit with some difficulty in the case of dtp. Our



